APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. ## **SECTION I: BACKGROUND INFORMATION** | Α. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION | (JD |): February 5 | 5, 2008 | |----|--|-----|---------------|---------| |----|--|-----|---------------|---------| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) NAB-2007-10171-P02 | |-----------|---| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1909° N, Long. 77.4443° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Tributary to Conodoguinet Creek | | | Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, and September 25, 2007 | | SEC
A. | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. | | | a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs | #### b. Identify (estimate) size of waters of the U.S. in the review area: Impoundments of jurisdictional waters Non-wetland waters: 200-linear feet: 5-width (ft) and/or drainage area to roadway crossing is 49 acres. Wetlands: 0 acres. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Isolated (interstate or intrastate) waters, including isolated wetlands Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs c. Limits (boundaries) of jurisdiction based on: Established by OHWM. Elevation of established OHWM (if known): ## 2. Non-regulated waters/wetlands (check if applicable):³ | Potentially ju | ırisdictional | waters and/or | r wetlands | were assessed | l within the review | area and determin | ed to be not juri | sdictional. | |----------------|---------------|---------------|------------|---------------|---------------------|-------------------|-------------------|-------------| | Explain: | | | | | | | | | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: # Watershed size: Pick List Drainage area: Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-----|--| | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed
and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community other (list): | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: .tify specific pollutants, if known: | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|---| | 2. | Cha | acteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) <u>General Flow Relationship with Non-TNW</u> :
Flow is: Pick List . Explain: | | | | Surface flow is: Pick List Characteristics: | | | | Subsurface flow: Pick List . Explain findings: | | | | Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain: | | | | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Identify specific pollutants, if known: | | | (iii) | Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | acteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Direct Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: NA. - Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: NA. - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: # D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | |----|--| | 2. | RPWs that flow directly or indirectly into TNWs. ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The Corps verified surface flow in the stream channel during the September 25, 2007, field inspection. At this time, Cumberland County was in a declared drought watch in the Commonwealth of Pennsylvania. The stream channel on project mapping is identified as NS 38-A on the north side of the PA Turnpike, and SS 55 on the south side of the PA Turnpike. ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | |-----|--| | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide
estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | SUC | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: | | | | E. ⁸See Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | Other factors. Explain: . | |-----------|--| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SE | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 4 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24,000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. | | | U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24,000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Newville, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): PASDA web site (2003) USGS NHAP83-CIR-507-225, 226, 227-3/26/84 USGS NAPP-CIR-108-24, 25-10/2/87. or Other (Name & Date): ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. | | | CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August 19, 2005. | | | Applicable/supporting case law: . | |-------------|--| | | Applicable/supporting scientific literature: . | | \boxtimes | Other information (please specify): Corps field notes. | # B. ADDITIONAL COMMENTS TO SUPPORT JD: . ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. # **SECTION I: BACKGROUND INFORMATION** | A. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): | February | 5, 2 | 2008 | |----|--|----------|------|------| |----|--|----------|------|------| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | NAB-2007-01071-P02 | |------|--| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania
County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1916°N, Long. 77.4392°W. Universal Transverse Mercator: Upstream point of relevant reach: 40.1922/-77.4457 and downstream point of relevant reach: 40.1875/-77.4357 Name of nearest waterbody: Unnamed Tributary to Conodoguinet Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): | | | ☐ Office (Desk) Determination. Date: Field Determination. Date(s): December 4, 2001, September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | revi | we area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce Explain: CWA SECTION 404 DETERMINATION OF JURISDICTION. | | | | | THE | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: (SS 56) 320-linear feet: 5-width (ft) and/or acres. Wetlands: (NW 28, SW 41) 0.143 acres. c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual | | | Elevation of established OHWM (if known): and Established by OHWM. | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting decumentation is presented in Section III E Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | TNW | v | |-----|---| Identify TNW: Summarize rationale supporting determination: #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": ### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW #### (i) General Area Conditions: Watershed size: 27.7 acres Drainage area: 27.7 acres Average annual rainfall: 39.78 inches Average annual snowfall: 33.6 inches # (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 2 tributaries before entering TNW. Project waters are **30 (or more)** river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Unnamed tributary to Conodoguinet Creek flows to Conodoguinet Creek flows to the Susquehanna River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. Tributary stream order, if known: 1st order stream. (b) General Tributary Characteristics (check all that apply): Natural Tributary is: Artificial (man-made). Explain: Manipulated (man-altered). Explain: Culvert crossing, degradation by livestock watering. **Tributary** properties with respect to top of bank (estimate): Average width: 5- feet Average depth: 0.25 feet Average side slopes: 3:1. Primary tributary substrate composition (check all that apply): Sands ⊠ Silts Concrete Cobbles ⊠ Gravel Muck ☐ Bedrock Vegetation. Type/% cover: Other. Explain: Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: vegetated banks with slight erosion. Presence of run/riffle/pool complexes. Explain: Tributary geometry: Meandering Tributary gradient (approximate average slope): less than 0.02 % Flow: Tributary provides for: Seasonal flow Estimate average number of flow events in review area/year: 20 (or greater) Describe flow regime: perennial. Other information on duration and volume: Surface flow is: Discrete and confined. Characteristics: Surface flow was observed throughout the Review Area and was confined to a single non-braided stream channel. Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: Tributary has (check all that apply): Bed and banks OHWM⁶ (check all indicators that apply): clear, natural line impressed on the bank the presence of litter and debris changes in the character of soil destruction of terrestrial vegetation shelving the presence of wrack line vegetation matted down, bent, or absent \boxtimes sediment sorting leaf litter disturbed or washed away \boxtimes scour ⊠ sediment deposition multiple observed or predicted flow events water staining abrupt change in plant community other (list): ☐ Discontinuous OHWM. ⁷ Explain: If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: oil or scum line along shore objects survey to available datum; fine shell or debris deposits (foreshore) physical markings; physical markings/characteristics vegetation lines/changes in vegetation types. tidal gauges other (list): (iii) Chemical Characteristics: Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: Water color was clear on day of site visit. Identify specific pollutants, if known: Is expected that livestock manure contributes to excessive nutrients to the stream channel including fecal coliform contamination. Stream bank erosion from livestock contributes sediments to channel. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. Thid | | (iv) | \square | logical
Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Small, generally 5-10 feet in width, discontuous. Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|---------------|-----------|---| | 2. | Cha | aract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Assical Characteristics: General Wetland Characteristics: Properties: Wetland size: 0.143acres Wetland type. Explain: PEM. Wetland quality. Explain: Good, although overall size is limited. Project wetlands cross or serve as state boundaries. Explain: No. | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Intermittent flow . Explain: Flows from the wetlands into the stream are expected to be intermittent in nature, particularly during the late winter/early spring seasons when local water tables are at their highest levels. | | | | | Surface flow is: Overland sheetflow Characteristics: Surface flow from the wetlands into the stream channel would be characterized as sheet flow, although wetland NW28 situated in a defined drainage/depression. | | | | | Subsurface flow: Yes. Explain findings: Subsurface flow is likely, due to no observable flow on the day of the field visit in wetland NW28 on the upgradient (north) side of the PA Turnpike culvert crossing, however, observable flow at the culvert outlet and small springs near culvert outlet. | | | | | Dye (or other) test performed: No. | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: surface and subsurface flow contributing hydrology to the Stream channel. ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: wetland is separated by 24-inch RCP under the PA Turnpike Roadway. | | | | (d) | Proximity (Relationship) to TNW Project wetlands are 30 (or more) river miles from TNW. Project waters are 20-25 aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. Estimate approximate location of wetland as within the 2-year or less floodplain. | | | (ii) | | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The two wetlands within the Review Area are located within a small watershed (27.7 acres drainage to Review Area) and the watershed is primarily forested and agricultural lands. The lowest portion of the unnamed tributary flows through the large floodplain of the Conodoguinet Creek containing extensive adjacent wetland systems. Due to private property issues, only the Review Area was investigated in the field | | | | en | entify specific pollutants, if known: Pollutants entering wetland NW28, in the immediate vicinity of the PA Turnpike, buld include non-point source runoff from the roadway itself including oil, grease, and tar. Such pollutants would also ter wetland SW41 during above bankfull discharge flooding events. SW41 is subject to livestock grazing and thus imal waste pollution. | | | (iii | Bio | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: PEM 100%. Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: | | | Other environmentally-sen | sitive species. Exp | plain findings: | | | | |---------------|-----------------------------|---------------------|------------------|-----------------|-------------------|-----------------| | \boxtimes A | Aquatic/wildlife diversity. | Explain findings: | The wetlands may | support snall p | opulations of inv | vertebrates and | | ä | amphibians | | | | | | ## 3. Characteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: 3 Approximately (3-5) acres in total are being considered in the cumulative analysis. For each wetland, specify the following: Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Wetland NW28 N 0.077 Wetland SW41 Y 0.066 Review of aerial photographs, NWI mapping and soil survey indicated the presence of a larger 3-5 acre PEM wetland in the floodplain of Conodoguinet Creek, but also adjacent to the unnamed tributary within the approximately 2.000-linear foot Relevant Reach. Summarize overall biological, chemical and physical functions being performed: The wetlands receive surface runoff from the adjacent turnpike roadway, and animal waste from agricultural operations. The wetlands perform functions including water quality improvements, ground water discharge and wildlife habitat. The larger 3-5 acre wetland provides greater functions including flood flow retention, water quality improvement, wildlife habitat, sediment trapping, and sediment retention. These functions will be discussed in greater detail in the next section. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Yes, wetland NW28 separated from RPW (unnamed tributary to Conodoguinet Creek) by 24-inch RCP culvert under the Pennsylvania Turnpike at milepost 211.0. The Relevant Reach for purposes of the Significant Nexus Determination is the entire length of the unnamed tributary originating at NW28 (on the north side of the PA Turnpike) and continuing downstream approximately 2,000-linear feet to the confluence with the Conodoguinet Creek. #### Significant Nexus Checklist The unnamed tributary to the Conodoguinet Creek and all adjacent wetlands provide the following functions that may affect TNW: ☐ Habitat for Wildlife – Describe the food, water, shelter and space. Wetlands NW28 and SW 41 are expected to provide wildlife habitat for invertebrate and amphibian species, however, due to the relatively small size of these wetlands this function is limited. The NWI mapped wetlands in the floodplain of the Conodoguinet Creek, where the unnamed tributary flows into the Conodoguinet Creek, provide significant functions for wildlife including an important wildlife corridor, resting and rearing sites, and food source areas. ☐ Aquatic Life (Organisms)
– examples of aquatic life or signs of aquatic life. An examination of benthic substrates of the unnamed tributary to the Conodoguinet Creek revealed limited aquatic macro-invertebrates, likely due to water quality impairment from livestock waste directly entering the stream. The wetlands likely provide habitat amphibian species. □ Support Nutrient Cycling – watering, decomposition, fertilizers, flooding. Wetlands NW28 and SW41 provide limited nutrient production export due to their size. The larger NWI mapped wetlands within the floodplain of the Conodoguinet Creek provide for substantial nutrient production export, in particular the contribution of an allochthonous source of energy to the aquatic food web in the form of tree leaves. □ Sediment Transport – Describe if system is in balance or is there excess erosion or depositional features. The unnamed tributary to the Conodoguinet Creek exhibited unstable and eroding stream banks within the Review Area primarily due to livestock trampling, but also from uncontrolled runoff from the PA Turnpike. Sediment originating from the streambank erosion is carried by the unnamed tributary to the Conodoguinet Creek and ultimately the Susquehanna River, a TNW. Wetlands adjacent to the unnamed tributary provide for sediment retention during flooding events. □ Pollutant Trapping/Filtration. The wetlands adjacent to the unnamed tributary provide for pollutant trapping and filtration originating from non-point source pollutants from storm water runoff (from the PA Turnpike), animal wastes from the agricultural operation, and sediments □ WQ Improvement – Overall existing setting (nitrogen & phosphorus). It is likely that the unnamed tributary has impaired water quality from animal wastes due to livestock access, so the stream channel is not contributing to water quality improvement. The adjacent wetlands have good potential to remove nutrients including nitrogen and phosphorus. ☐ Temperature/PH – water chemistry, buffers and land use. Wetland NW28 provides for groundwater discharge to the unnamed tributary thus cooling water temperatures. The larger PFO wetlands in the floodplain of the Conodoguinet Creek will assist in cooling water temperatures due to shading. ☐ Flood Storage – Does subject waters and/or wetland serve to store any stormwater and/or floodwaters? Wetlands NE 28 and SW 41 provide for minimal flood storage due to their relatively small size, however, the larger floodplain wetland where the unnamed tributary flows into the Conodoguinet Creek will provide for significant flood storage. ☐ Commerce — known or documented use from out of state. No factors could be identified. □ Navigation – movement of crafts or vessels on water. The unnamed tributary is not navigable. The Conodoguinet Creek at the downstream limit of the Relevant Reach is classified as a "Submerged Lands of the Commonwealth of PA" (PA State navigable waters), and has recreational use as a designated water trail. Such recreational use is primarily in the form of canoes and kayaks. □ Recreation – use of waters or methods by general public use boating, swimming, fishing, etc. No public recreation use of the unnamed tributary or wetlands NW28 and SW 41 are expected. The Conodoguinet Creek provides for significant recreational use including boating and fishing. Elimination or impairment of the unnamed tributary and similar tributaries would cumulatively adversely affect recreational use of the Conodoguinet Creek and the Susquehanna River. ☐ Public Health – overall health of a community. The cumulative impact of nutrient inputs from the unnamed tributary and other similar tributaries significantly affects water quality in the downstream TNW's. The Chesapeake Bay Tributaries Strategy program being implemented by the PADEP seeks measures to address the cumulative adverse impacts of excessive nutrients being carries to the Chesapeake Bay through it's tributaries. ☐ Groundwater discharge/recharge. Wetland NW28 contributes to groundwater discharge and ultimately baseflows in the unnamed tributary and receiving downstream TNW's. ☐ Other. # D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial. The unnamed tributary to the Conodoguinet Creek (SS 56) contained observable surface flow during the September 25, 2007, site visit. Observation of stream substrates revealed the presence of benthic aquatic macroinvertebrates including Trichoptera sp. Inspection of aerial photographs depicts a defined channel with narrow vegetated riparian corridor for the majority of the 2,000 foot length of the stream, prior to the point where it enters the floodplain and confluence of the Conodoguinet Creek. Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: **320-** linear feet, **5-**width (ft) within Review Area. Other non-wetland waters: acres. Identify type(s) of waters: Non-RPWs⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: Identify type(s) of waters: Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland SW 41 is directly abutting the unnamed tributary as verified by the Corps September 25, 2007, field inspection. Wetland SW 41 was delineation be the environmental consultant and depicted as directly abutting the unnamed tributary on the delineation plan. Wetland SW 41 is 0.066 acre in size. Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Provide acreage estimates for jurisdictional wetlands in the review area: **0.066** acres. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. Wetland NW 28 is adjacent to the unnamed tributary but separated by the 24-inch CMP culvert underneath the PA Turnpike at milepost 211, thus providing a discrete and confined conveyance. Wetland NW 28 has a surface and subsurface hydrologic connection with the unnamed tributary. Provide acreage estimates for jurisdictional wetlands in the review area: **0.077** acres. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional wetlands in the review area: ⁸See Footnote # 3. | | 7. Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | |-----------|--| | E. | ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for
jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SF | CTION IV: DATA SOURCES. | | | | | Α. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): ☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: ☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant. ☐ Office concurs with data sheets/delineation report. ☐ Office does not concur with data sheets/delineation report. ☐ Data sheets prepared by the Corps: ☐ Corps navigable waters' study: | ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | U.S. Geological Survey Hydrologic Atlas: . | |-------------|--| | | USGS NHD data. | | | USGS 8 and 12 digit HUC maps. | | \boxtimes | U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, Photorevised 1969 and 1975. 1:24000 scale. | | \boxtimes | USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA, 1986. | | \boxtimes | National wetlands inventory map(s). Cite name: Newville, PA., 1988. | | | State/Local wetland inventory map(s): . | | | FEMA/FIRM maps: . | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) | | \boxtimes | Photographs: Aerial (Name & Date): USGS NHAP-83-CIR-507-225, 226, 227-3/26/84 | | | USGS NAPP-CIR-108-24, 25-10/2/87. | | | or 🖂 Other (Name & Date): Ground level, B&W photographs. | | \boxtimes | Previous determination(s). File no. and date of response letter: | | | CENAB-OP-RPA(PENNSYLVANIA TURNPIKĖ COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, | | | issued on March 01, 2002. | | | CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on | | | August 19, 2005. | | | Applicable/supporting case law: | | | Applicable/supporting scientific literature: | | \boxtimes | Other information (please specify): Corps field notes. | # B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SECTION I: | BA | CKGROUND | INFORMATION | |------------|----|----------|-------------| |------------|----|----------|-------------| # A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | NAB-2007-01071-F02 | |-----|--| | c. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1922° N, Long. 77.4353° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed tributary to Conodoguinet Creek (Winter Stream) Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the few area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: (NS 39 and SS 57) 700-linear feet: 5-width (ft) and/or drainage area to roadway crossing is 233 acres. Wetlands: (Wetlands "D" and SW 42) 0.173 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
Elevation of established OHWM (if known): and established by OHWM. | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional Explain: . | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs),
i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: # Watershed size: Pick List Drainage area: Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are Pick List aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-----|--| | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: . | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Tributary has (check all that apply): the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community | | | Discontinuous OHWM. ⁷ Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: tify specific pollutants, if known: | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | iological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|--| | 2. | Cha | cteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | hysical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: . Wetland quality. Explain: . Project wetlands cross or serve as state boundaries. Explain: . | | | | Surface flow is: Pick List Characteristics: | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: | | | | Separated by berm/barrier. Explain: Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Chemical Characteristics: haracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: dentify specific pollutants, if known: | | | (iii) | iological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | cteristics of all wetlands adjacent to the tributary (if any) ll wetland(s) being considered in the cumulative analysis: Pick List pproximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the
tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: NA. - Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: NA. - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: # D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | |----|--| | | TNWs: linear feet width (ft), Or, acres. | | | Wetlands adjacent to TNWs: acres. | | 2. | RPWs that flow directly or indirectly into TNWs. | | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that | | | tributary is perennial: The unnamed tributary to Conodoguinet Creek (identified as "Winter Stream" on the project mapping) | | | was verified to contain the presence of finfish and benthic aquatic macroinvertebrates through the examination of stream | | | channel substrates including cobbles and rubbles. The stream is identified as a perennial channel on the USGS quad sheet | The total drainage area to the Review Area is 233 acres, and personal experience of similar streams in the region has confirmed a perennial flow regime in streams with a total surface drainage area of less than 100 acres. | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----|--| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 700- linear feet, 5-width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: The project mapping, including wetland delineation as depicted on the Aquatic Resource Impact Map show wetlands "D" and SW 42 directly abutting the perennial stream channel. This was verified by the Corps during the September 25, 2007, field investigation. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.173 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 | E. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----|---| | | Identify water body and summarize rationale supporting determination: | | | | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: | | | Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds:
acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | SE | CTION IV: DATA SOURCES. | | | | | Α. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 5 of 22, dated August 27, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. | | | USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland andPerry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Newville, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: ☑ Aerial (Name & Date): PASDA web site (2003) USGS NHAP83-CIR-507-225, 226, 227-3/26/84 | USGS NAPP-CIR-108-24, 25-10/2/87. or ☑ Other (Name & Date): Ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). ☑ Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on march 1, 2002. CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August 19, 2005. ☑ Applicable/supporting case law: Applicable/supporting scientific literature: ☑ Other information (please specify): Corps field notes. ## B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | Α. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION | (JD |): February 5 | 5, 2008 | |----|--|-----|---------------|---------| |----|--|-----|---------------|---------| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | NAB-2007-01071-P02 | |-----------|--| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.192778° N, Long. 77.430833° W. Universal Transverse Mercator: Name of nearest waterbody: Conodoguinet Creek | | | Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, September 25, 2007 | | SEG
A. | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | we area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres. | | | c. Limits (boundaries) of jurisdiction based on: Pick List Elevation of established OHWM (if known): | | | Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: The channel identified as SS 58 on the Aquatic Resource Impact Map is an upland constructed stormwater drainage ditch currently serving, and within the 100-foot right-of-way of the PA Turnpike. | Boxes checked below shall be supported by completing the appropriate sections in Section III below. Por purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: ### Watershed size: Pick List Drainage area: Pick List Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project
waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-----|--| | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: . Presence of run/riffle/pool complexes. Explain: . Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: . | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Tributary has (check all that apply): the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community | | | ☐ Discontinuous OHWM. ⁷ Explain: . | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: oil or scum line along shore objects fine shell or debris deposits (foreshore) physical markings/characteristics physical markings/characteristics tidal gauges other (list): Mean High Water Mark indicated by: survey to available datum; physical markings; vegetation lines/changes in vegetation types. | | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: tify specific pollutants, if known: | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biol | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|------------|-------|--| | 2. | Cha | aract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Sical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: Surface flow is: Pick List Characteristics: Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: surface flow occurs post storm evens or after flooding events. ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: wetland is separated by the Turnpike Roadway. | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: uracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: ntify specific pollutants, if known: | | | (iii) | Bio | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All | wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: . - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: # D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | |----
---| | | TNWs: linear feet width (ft), Or, acres. | | | Wetlands adjacent to TNWs: acres. | | 2. | RPWs that flow directly or indirectly into TNWs. | | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that | | | tributary is perennial: . | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are | | | jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows | | | seasonally: . | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | |-----|---| | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | SUC | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | Ide | ntify water body and summarize rationale supporting determination: | E. ⁸See Footnote # 3. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | |----|-------------|--| | F. | NO
 | N-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): The channel identified as SS 58 is a linear, upland constructed, stormwater drainage ditch for the PA Turnpike. The ditch is approximately 100-feet in length within the Review Area corresponding to the portion located within the PA Turnpike right-of-way on the south side of the roadway at approximately milepost 211.4. The 5-foot wide ditch was excavated in Monongahela silt loam 0 to 3 % slopes, a non-hydric soil. The ditch beyond the Review Area was not examined (except for portions that could be observed from the PA Turnpike right-of-way) and this determination of no jurisdiction is specifically limited to the approximately 100-foot section within the Review Area. | | | fact | vide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR ors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional gment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. | | | | Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | | vide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such ding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | SUP | NIV: DATA SOURCES. PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked requested, appropriately reference sources below): | | | \boxtimes | Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource | | | Imp | act Map, sheet 6 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. | | | | ☐ Office concurs with data sheets/delineation report. ☐ Office does not concur with data sheets/delineation report. | | | \Box | Data sheets prepared by the Corps: Corps navigable waters' study: | | | | U.S. Geological Survey Hydrologic Atlas: . | | | | ☐ USGS NHD data. ☐ USGS 8 and 12 digit HUC maps. | | | | U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite
name: Newville, PA., 1988. | | | | State/Local wetland inventory map(s): FEMA/FIRM maps: | | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: ☑ Aerial (Name & Date): PASDA web site (2003) | | | | USGS NHAP83-CIR-507-225, 226, 227-3/26/84 | | | | USGS NAPP-CIR-108-24, 25-10/2/87. or ☑ Other (Name & Date): Ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). | | | CO | Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE MMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. | | CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August | |---| | 19, 2005. | | Applicable/supporting case law: . | | Applicable/supporting scientific literature: . | | Other information (please specify):Corps field notes. | | | # B. ADDITIONAL COMMENTS TO SUPPORT JD: . # APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. # **SECTION I: BACKGROUND INFORMATION** # A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | NAB-2007-01071-P02 | |-----|--| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1933° N, Long. 77.4284° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Tributary to Conodoguinet Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: (SS 59) 200 linear feet: 8 width (ft) and/or acres. Wetlands: (NW 29) 0.113 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): and established by OHWM. | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW **General Area Conditions:** # Watershed size: Pick List Drainage area: Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-----
---| | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting leaf litter disturbed or washed away sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting scour multiple observed or predicted flow events abrupt change in plant community other (list): | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: .tify specific pollutants, if known: | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (IV) | B10 | | ristics (type, average width): | | | |----|------|--------------|---|---------------------------------------|--------------------------------|--------------------------| | | | H | Wetland fringe. Characteris | | • | | | | | | Habitat for: | | | | | | | | Federally Listed species. | | | | | | | | Fish/spawn areas. Explain | | | | | | | | | ensitive species. Explain find | ings: . | | | | | | Aquatic/wildlife diversit | y. Explain findings: . | | | | 2. | Cha | aract | eristics of wetlands adjacen | t to non-TNW that flow dire | ctly or indirectly into TNW | 7 | | | (i) | | sical Characteristics: | | | | | | | (a) | General Wetland Characteris | stics: | | | | | | | Properties: Wetland size: acres | | | | | | | | Wetland type. Explain: | | | | | | | | Wetland quality. Explai | n: . | | | | | | | Project wetlands cross or ser | rve as state boundaries. Explai | n: . | | | | | <i>a</i> > | C 1E D1. 1 | '.1 N.1 (TNIX) | | | | | | (b) | General Flow Relationship v
Flow is: Pick List . Explain: | | | | | | | | 1 low is. I lek List. Explain. | • | | | | | | | Surface flow is: Pick List | | | | | | | | Characteristics: . | | | | | | | | Subsurface flow: Pick List. | Explain findings: | | | | | | | Dye (or other) test pe | | | | | | | | | | | | | | | (c) | Wetland Adjacency Determine | ination with Non-TNW: | | | | | | | Directly abutting | | | | | | | | Not directly abutting | drologic connection. Explain: | | | | | | | Ecological connection | | • | | | | | | Separated by berm/b | | | | | | | | | • | | | | | | (d) | Proximity (Relationship) to | | | | | | | | Project wetlands are Pick Li | | 'NIW | | | | | | Flow is from: Pick List. | t aerial (straight) miles from T | IN W. | | | | | | | on of wetland as within the Pi | ck List floodplain. | | | | | | ** | | • | | | | (ii) | | emical Characteristics: | | | | | | | Cha | | ., water color is clear, brown, | oil film on surface; water qua | ality; general watershed | | | | Idei | characteristics; etc.). Explaintify specific pollutants, if known | | | | | | | raci | ini y specific politicans, ii kii | , | | | | | (iii |) Bio | | tland supports (check all tha | t apply): | | | | | | Riparian buffer. Characteris | | • | | | | | H | Vegetation type/percent cov
Habitat for: | er. Explain: . | | | | | | ш | Federally Listed species. | Explain findings: | | | | | | | Fish/spawn areas. Explain | | | | | | | | | ensitive species. Explain find | ings: . | | | | | | Aquatic/wildlife diversit | y. Explain findings: . | | | | 3. | Ch | aract | eristics of all wetlands adjac | pant to the tributery (if env) | | | | J. | CII | | | n the cumulative analysis: Pic | k List | | | | | | | are being considered in the co | | | | | | | T 1 .1 1 10 5 | C 11 . | | | | | | | For each wetland, specify th | - | D. d. L. a Wan | d. (;) | | | | | Directly abuts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | Summarize overall biological, chemical and physical functions being performed:. ### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: ## D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | |--| | RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Surface flow was directly observed during the Corps September 25, 2007, field investigation, and at this time Cumberland County was included in a list of counties under a declared drought
watch. Finfish were observed in the stream channel. A distinct stream channel signature is observable on aerial photographs from several years of coverage. | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 200- linear feet, 8-width (ft). Other non-wetland waters: Identify type(s) of waters: | | | | 3. | Non-RPWs° that flow directly or indirectly into TNWs. | |-----|--| | | Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland NW 29 directly abuts the stream channel on both banks on the north side of the PA Turnpike road crossing at approximately milepost 211.6, as depicted on the delineation plan and verified during the Corps September 25, 2007, field investigation. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.113 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | SUC | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | Ide | ntify water body and summarize rationale supporting determination: | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | E. ⁸See Footnote # 3. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): . | |----|---| | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 7 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24,000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Newville, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: (National Geodectic Vertical Datum of 1929) | | | Discription Discription Date D | ## B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army
Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. # <u>SECTION I: BACKGROUND INFORMATION</u> A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | NAB-2007-01071-P02 | |-----------|---| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1942° N, Long. 77.4242° W. Universal Transverse Mercator: Name of nearest waterbody: Center Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, September 25, 2007 | | SEC
A. | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | are Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area:
Non-wetland waters: (Center Creek, identified as NS 40 and SS 60) 700 linear feet: 35width (ft) and/or wetlands: (NW 29-A) 0.013 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): and established by OHWM. | | | 2. Non-regulated waters/wetlands (check if applicable): Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: ## Watershed size: Pick List Drainage area: Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are Pick List aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-----|--| | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: . | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply):
clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Tributary has (check all that apply): the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community | | | ☐ Discontinuous OHWM. ⁷ Explain: . | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: oil or scum line along shore objects fine shell or debris deposits (foreshore) physical markings/characteristics physical markings/characteristics tidal gauges other (list): Mean High Water Mark indicated by: survey to available datum; physical markings; vegetation lines/changes in vegetation types. | | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: tify specific pollutants, if known: | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|------------|-------|--| | 2. | Cha | ıract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Sesical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: . Wetland quality. Explain: . Project wetlands cross or serve as state boundaries. Explain: . | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: . | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: uracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: utify specific pollutants, if known: | | | (iii) | Bio | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: . Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: . | | 3. | Cha | All | wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: . - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: ## D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | |----|---| | 2. | RPWs that flow directly or indirectly into TNWs. ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Center Creek has a drainage area of 4,032 acres and is depicted as a perennial stream on the Newville, PA., USGS quad. The Corps field inspection of September 25, 2007, verified the presence of observable surface flow, finfish populations, and benthic aquatic macroinvertebrates through the examination of channel substrates. ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 700- linear feet, 35-width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | |----
---| | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: The 0.013 acre Wetland NW 29-A is located on a mid-channel sediment bar immediately upstream of the PA Turnpike box culvert crossing. The wetland is in effect an island within the stream channel and is completely surrounded by, and directly abutting, the RPW. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.013 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. | E. ⁸See Footnote # 3. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | ☐ Interstate isolated waters. Explain: ☐ Other factors. Explain: | |----|---| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SE | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 7 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Newville, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): PASDA web site (2003). USGS NHAP83-CIR-507-225, 226, 227-3/26/84. USGS NHAP83-CIR-507-225, 226, 227-3/26/84. | | | or Other (Name & Date): Ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TRUNPIKE COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. | | CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August | |---| | 19, 2005. | | Applicable/supporting case law: . | | Applicable/supporting scientific literature: . | | Other information (please specify): Corps field notes. | | | ## B. ADDITIONAL COMMENTS TO SUPPORT JD: . ## APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. ## **SECTION I: BACKGROUND INFORMATION** ## A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215
Mainline) NAB-2007-01071-P02 | | NAB-2007-01071-P02 | |------|--| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1956°N, Long. 77.4160°W. Upstream point of relevant reach: 40.2485°N/77.4472°W and downstream point of relevant reach: 40.1900°N/77.4182°W Universal Transverse Mercator: Name of nearest waterbody: Doubling Gap Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: Field Determination. Date(s): December 4, 2001, and September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | revi | are Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: (Doubling Gap Creek identified on the delineation plan as NS 42 and SS 62) 300-linear feet: 40-width (ft) and/or acres. Wetlands: (NW 41, NW 30, NW 31, SW 47, SW 47-A, SW 48, and Wetland #02) 0.595 acres. c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual | | | Elevation of established OHWM (if known): and, established by OHWM. 2. Non-regulated waters/wetlands (check if applicable): Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 4 | | ъ. т | ** | r | |---|-------|------|----|---| | • |
Т | N | v | v | Identify TNW: Summarize rationale supporting determination: #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": ### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW ### i) General Area Conditions: Watershed size: 10,368 acres Drainage area: 10,368 acres Average annual rainfall: 39.78 inches Average annual snowfall: 33.6 inches ## (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 2 tributaries before entering TNW. Project waters are **25-30** river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: Doubling Gap Creek to Conodoguinet Creek to Susquehanna River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | (b) | Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: Road crossings, historic mill dam. | |-------|-----|---| | | | Tributary properties with respect to top of bank (estimate): Average width: 40 feet Average depth: 2 feet Average side slopes: 3:1. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: vegetated banks with slight erosion. Presence of run/riffle/pool complexes. Explain: Tributary geometry: Meandering Tributary gradient (approximate average slope): 0.02 or less % | | | (c) | Flow: Tributary provides for: Seasonal flow Estimate average number of flow events in review area/year: 20 (or greater) Describe flow regime: Perennial. Other information on duration and volume: | | | | Surface flow is: Discrete and confined. Characteristics: Surface flow is continuous throughout the relevant reach, and is primarily confined to a single channel with minor exceptions at debris jams and mid-channel point bars. | | | | Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that
apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition sediment deposition matter down, bent, or absent sediment deposition multiple observed or predicted flow events abrupt change in plant community Discontinuous OHWM. Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | | emical Characteristics: aracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: Water color clear during site visits. Some fine sediment transport and turbidity expected after storm events. Upper reaches of creek classified by the PADEP as a high quality cold water fishery (HQ-CWF) and stocked with trout by the PA Fish and Boat Commission. Lower reaches classified as a cold water fishery (CWF) including relevant reach. | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. density residential development. Identify specific pollutants, if known: (iv) Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Farmland tree line and riparian corridor for Conodoguinet Ck. Average width of corridor is 10 to 25 feet. ☐ Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW (i) Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: 0.591 acres Wetland type. Explain:PEM. Wetland quality. Explain: Very Good. Project wetlands cross or serve as state boundaries. Explain: (b) General Flow Relationship with Non-TNW: Flow is: **Intermittent flow**. Explain: Surface flow is: Discrete and confined Characteristics: Subsurface flow: Yes. Explain findings: wetland located within the immediate floodplain of Doubling Gap Creek and separated only by the sediment deposit berms, therefore, flow moves subsurface to meet stream elevation. Dye (or other) test performed: (c) Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☑ Not directly abutting Discrete wetland hydrologic connection. Explain: surface flow occurs post storm events or after flooding events. Ecological connection. Explain: Separated by berm/barrier. Explain: a small upland sediment berm exists between the creek and wetlands due to sediment load deposits during storm events. (d) Proximity (Relationship) to TNW Project wetlands are 30 (or more) river miles from TNW. Project waters are 20-25 aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. Estimate approximate location of wetland as within the 2-year or less floodplain. (ii) Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: No visible signs of oil film or other pollutant contanimation. Identify specific pollutants, if known: (iii) Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetated, PEM. 10-25 feet wide. ☑ Vegetation type/percent cover. Explain: PEM 100%. Mabitat for: ☐ Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: Wetlands would support seasonal aquatic life cycles of various invertebrates and amphibians. Upper portions of the watershed forested, middle and lower reaches contain primarily agricultural lands and rural low- 3. Characteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: 15-20 Approximately (55.6) acres in total are being considered in the cumulative analysis. For each wetland, specify the following: | Directly a | buts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | |------------|-------------|-----------------|-----------------------|-----------------| | NW 30 | N | 0.218 | NW 31 N | 0.018 | | SW 47 | N | 0.199 | 02 N | 0.120 | | SW 48 | N | 0.036 | SW 47A N | 0.002 | Outside of Review Area, but within Relevant reach for SNE: NWI mapped PEM, PSS, and PFO 55.0 acres Summarize overall biological, chemical and physical functions being performed: All six wetlands within the Review Area received surface stormwater runoff from the adjacent Pennsylvania Turnpike and provides water quality treatment and sediment retention before the stormwater enters Doubling Gap Creek. Wildlife habitat is provided by the wetland complex. Flood flow attenuation is provided by the wetlands as well as ground water discharge to the stream. When considered cumulatively with the estimated additional 55 acres of wetlands within the Relevant Reach, the wetlands are providing substantial functions and services which will be discussed in more detail in Section III.C. below. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Wetlands NW30, NW31, SW47, SW47A, SW48, and Wetland 02 are all adjacent to Doubling Gap Creek (RPW) but do not directly abut the creek. Significant Nexus Checklist Doubling Gap Creek and adjacent wetlands within Relevant Reach provide the following functions that may affect TNW: ☐ Habitat for Wildlife – Describe the food, water, shelter and space. The large amount of wetlands within the Relevant Reach as well as the stream channel provides very good habitat for a wide variety of aquatic and terrestrial species. The NWI mapped wetlands reveal a diverse | assemblage of PEM, PSS, and PFO providing habitat and a wildlife dispersal corridor along Doubling Gap Creek. Wetlands observed during field investigations revealed a diverse species composition of hydrophytic vegetation with native plants predominating. |
--| | □ Aquatic Life (Organisms) – examples of aquatic life or signs of aquatic life. Doubling Gap Creek is a larger perennial stream of approximately 40-feet in width. The stream supports a healthy aquatic community including benthic macro-invertebrates, amphibians and finfish. | | □ Support Nutrient Cycling – watering, decomposition, fertilizers, flooding. Within and upstream of the Relevant Reach, the primary land use activities are agriculture and rural residential development. There is also recreational development, specifically the PA DCNR Doubling Gap State Park. Wetlands within the Relevant Reach support nutrient cycling through the addition of organic detritis and leaf matter important to food chain production. The benthic aquatic macro-invertebrate community within the creek also provide for nutrient uptake and transformation important to water quality. | | □ Sediment Transport – Describe if system is in balance or is there excess erosion or depositional features. Doubling Gap Creek is generally in a stable condition due to relatively low development in the watershed and the presence of a healthy vegetated riparian buffer. Local areas of bank instability and channel adjustment are present, examples are from a historic mill dam (Mixel dam) and debris jams caused by fallen trees causing mid-channel bar formation. Sediment transport is generally in balance, with the source of most sediments from agricultural activities within the watershed. Fine sediments are visible within the pools areas in the stream channel. | | □ Pollutant Trapping/Filtration. The wetlands within the Relevant Reach have the potential for effective pollutant trapping and filtration. Such pollutants include agricultural fertilizers, pesticides, and herbicides, and also animal wastes. Additional pollutants that are likely trapped, filtered and transformed by the wetlands are sediment and rural residential fertilizers and chemicals. The assimilative capacity of the numerous wetlands within the Relevant Reach in comparison to the total pollutant sources within the watershed is anticipated to be high. | | □ WQ Improvement – Overall existing setting (nitrogen & phosphorus). As discussed above, this function is anticipated to be an important function of the wetlands within the Relevant Reach. The nitrogen and phosphorus sources within the watershed are primarily from agricultural activities, and the wetlands have a very good potential to transform and remove these nutrients. Furthermore, the mapped NWI wetlands are dispersed throughout the Relevant Reach thus providing an increased opportunity for nutrient uptake and transformation prior to entering the creek. As already discussed, Doubling Gap Creek contains a healthy and diverse benthic aquatic macro-invertebrate community which performs WQ improvement through the uptake and transformation of nutrients that have already entered the creek. | | □ Temperature/PH – water chemistry, buffers and land use. PFO wetlands adjacent to the stream channel aid in shading the channel from direct sunlight and thus function to maintain water temperatures. Ground water discharge from discrete springs and spring seeps within the wetlands function to moderate water temperatures. | | □ Flood Storage – Does subject waters and/or wetland serve to store any stormwater and/or floodwaters? The Review Area and Relevant Reach area wetlands function to retain both floodwaters and stormwaters. Sormwater runoff from the Pennsylvania Turnpike are stroed, in part, by the Review Area wetlands located at the base of a steep 1:1 roadway fill. The large number of mapped NWI wetlands within the Relevant Reach, which are primarily located within relatively flat areas on the active floodplain of Doubling Gap Creek, will provide very good flood storage during storm events. | | \Box Commerce – known or documented use from out of state. The wetlands within the Review Area of Relevant Reach are not anticipated to provide any commerce functions on-site. | | \Box Navigation – movement of crafts or vessels on water. Doubling Gap Creek does not provide any regular recreational boating. The Conodoguinet Creek at the downstream point of the Relevant Reach is a PA State navigable water (Submerged Lands of the Commonwealth) and is regularly boated with canoes and kayaks. | | □ Recreation – use of waters or methods by general public use boating, swimming, fishing etc The majority of wetlands and stream channel within the Relevant Reach are private property, and thus not accessible by the general public. The Cododoguinet Creek at the downstream point of the Relevant Reach is a public waterway and is regularly used by the public for boating and fishing. | | □ Public Health – overall health of a community. The numerous functions provided by the stream channel and wetlands as discussed in this section serve as the opportunity to provide for this function. The water quality treatment functions as discussed above serve to cleanse water that flows to the Conodoguinet Creek and the Susquehanna River, where public water supply intakes are located. | | ☐ Groundwater discharge/recharge. The wetland situated within both the Review Area and cumulatively within the Relevant Reach provide groundwater discharge at discrete springs and spring seeps to assist in maintaining base flows, water temperatures, and water quality. | ## D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Doubling Gap Creek has a large drainage area to the Review Area (10.368 acres), is approximately 40feet wide, and contains finfish and benthic aquatic macro-invertebrate populations. Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally. Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 300- linear feet, 40-width (ft). Other non-wetland waters: acres Identify type(s) of waters: Non-RPWs⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Within the Relevant Reach there are several large wetlands identified on NWI mapping and aerial photographs that are directly abutting Doubling Gap Creek. The total estimated acreage is approximately 55 acres. Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above, Provide rationale indicating that wetland is directly abutting an RPW: Provide acreage estimates for jurisdictional wetlands in the review area: 55.0 acres. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. Wetlands within the Review Area under this category include NW 30, NW 31, NW 41. SW 47. SW 47-A. SW 48. and Wetland #02. Provide acreage estimates for jurisdictional wetlands in the review area: **0.595** acres. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided in Section III.C. Provide estimates for jurisdictional wetlands in the review area: acres. ⁸See Footnote # 3. | | 7. Impoundments of jurisdictional waters.⁹ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. ☑ Demonstrate that impoundment was created from "waters of the U.S." Doubling Gap
Creek contains an existing impoundment at 0.79 miles upstream from the confluence with the Susquehanna River. This impoundment is an historic mill dam known as the "Mixel Dam" approximately 7-feet high and 125-feet long. Mixel Dam is a "run-of-the-river" dam, and is located within the Relevant Reach, but not within the project specific Review Area . ☑ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | |-----|--| | Е. | ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | OT: | CONTINUE DATE A COLIDCE C | | | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): | Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheets 1-22, dated August 28, 2007. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | \boxtimes | <u></u> | | | | |-------------|--|--|--|--| | | Office concurs with data sheets/delineation report. | | | | | | Office does not concur with data sheets/delineation report. | | | | | | Data sheets prepared by the Corps: . | | | | | | Corps navigable waters' study: . | | | | | | U.S. Geological Survey Hydrologic Atlas: | | | | | _ | USGS NHD data. | | | | | | USGS 8 and 12 digit HUC maps. | | | | | \boxtimes | U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24000 scale. | | | | | \boxtimes | USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and /Perry Counties, PA., 1986. | | | | | | National wetlands inventory map(s). Cite name: Newville, PA., 1988. | | | | | | State/Local wetland inventory map(s): | | | | | | FEMA/FIRM maps: . | | | | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) | | | | | \boxtimes | Photographs: Aerial (Name & Date):PASDA web site (2003-2004). | | | | | | USGS NHAP-83-CIR-507-225, 226, 227-3/26/84 | | | | | | USGS NAPP-CIR-108-24, 25-10/2/87 | | | | | | or 🔀 Other (Name & Date): Site photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). | | | | | \boxtimes | Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE | | | | | CO | MMISSION/MILPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. | | | | | CEN | NAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August | | | | | 19, | 2005. | | | | | | Applicable/supporting case law: . | | | | | | Applicable/supporting scientific literature: . | | | | | \boxtimes | Other information (please specify): Corps field notes. | | | | | | | | | | ## B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SEC | CTION I: BACKGROUND INFORMATION | |-----|--| | A. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 | | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) NAB-2007-01071-P02 | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1959° N, Long. 77.4117° W. Universal Transverse Mercator: Upstream point of Relevant Reach: 40.1959°N, 77.4117°W, and downstream point of Relevant Reach: 40.1922°N, 77.4160°W Name of nearest waterbody: Unnamed Tributary to Doubling Gap Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001. and September 25, 2007 | | SEC | CTION II: SUMMARY OF FINDINGS | | A. | RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | ere Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the iew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs | ### b. Identify (estimate) size of waters of the U.S. in
the review area: Non-wetland waters: linear feet: width (ft) and/or acres Wetlands: 0.443 acres (Wetlands SW 49 and #01) Impoundments of jurisdictional waters c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Isolated (interstate or intrastate) waters, including isolated wetlands ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). | 2. | Non-re | egulated waters/wetlands (check if applicable): ³ | |----|--------|--| | | | Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional | | | | Explain: | ## SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. ## **TNW** Identify TNW: Summarize rationale supporting determination: ## Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": ### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### Characteristics of non-TNWs that flow directly or indirectly into TNW ## Watershed size: 75 acres Drainage area: 75 acres Average annual rainfall: 39.78 inches Average annual snowfall: 33.6 inches (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 3 tributaries before entering TNW. Project waters are **30 (or more)** river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. (i) General Area Conditions: Supporting documentation is presented in Section III.F. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West | | Project waters cross or serve as state boundaries. Explain: No. | |-----|--| | | Identify flow route to TNW ⁵ : Unnamed tributary to Doubling Gap Creek flows to Doubling Gap Creek, which flows to the Conodoguinet Creek, which flows to the Susquehanna River. | | | Tributary stream order, if known: . | | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: Through review of aerial photographs (stream is outside of Review Area on private property), the stream appears to have been channelized though active agricultural fields. | | | Tributary properties with respect to top of bank (estimate): Average width: 5-feet Average depth: 0.5- feet Average side slopes: 3:1. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: Unable to determine through review of aerial photographs. | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Unable to determine. Presence of run/riffle/pool complexes. Explain: Unable to determine. Tributary geometry: Relatively straight (as determined though review of aerial photographs). Tributary gradient (approximate average slope): % unable to determine. | | (c) | Flow: Tributary provides for: Seasonal flow (estimated due to size of wetlands at upstream point o Relevant Reach). Estimate average number of flow events in review area/year: 11-20 (estimated). Describe flow regime: Intermittent. Other information on duration and volume: | | | Surface flow is: Confined. Characteristics: (As determined through review of aerial photographs). | | | Subsurface flow: Pick List. Explain findings: Unable to determine. Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line vegetation matted down, bent, or absent sediment sorting leaf litter disturbed or washed away scour sediment deposition multiple observed or predicted flow events water staining abrupt change in plant community Other (list): Stream channel signature on aerial photpgraphs | | | ☐ Discontinuous OHWM. ⁷ Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iii) | Cha | emical Characteristics: (Unable to determine). aracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: Unable to determine. ntify specific pollutants, if known: | |----|-------|-------|--| | | (iv) | Bio | logical Characteristics. Channel supports (check all that apply): (Unable to determine). Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 2. | Cha | aract | teristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Wetland Characteristics: General Wetland Characteristics: Properties: Wetland size: wetlands within the reference reach approx. 1 acres Wetland type. Explain: PEM/PFO. Wetland quality. Explain: Moderate. Project wetlands cross or serve as state boundaries. Explain: No. | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Intermittent flow. Explain: | | | | |
Surface flow is: Confined Characteristics: Surface flow not observable during date of field visit. Several drainage patterns were noted in the wetland, and these drainage patterns converge outside of the Review Area to form the headwaters of the unnamed tributary to Doubling Gap Creek. Subsurface flow: Yes. Explain findings: Wetland is the headwater to an intermittent tributary that flows into Doubling | | | | | Gap Creek, and it is expected that groundwater discharge from the wetland contributes to the baseflow of the stream. | | | | (c) | □ Dye (or other) test performed: Wetland Adjacency Determination with Non-TNW: □ Directly abutting (As determined from review of aerial photographs). □ Not directly abutting □ Discrete wetland hydrologic connection. Explain: □ Ecological connection. Explain: □ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are 30 (or more) river miles from TNW. Project waters are 20-25 aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. Estimate approximate location of wetland as within the 2-year or less floodplain. | | | (ii) | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The wetland system within the Review Area did not appear to be subject to subjected to pollutants in excess of the assimilative capacity. Intify specific pollutants, if known: | | | (iii | Bio | Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: 10% PEM / 90% PFO. Habitat for: Federally Listed species. Explain findings: Sindspawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: Wetland area is expected to provide habitat for normal range of edge habitat species common to the area. | ### 3. Characteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: **3** Approximately (2) acres in total are being considered in the cumulative analysis. For each wetland, specify the following: | Directly abuts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | | |-----------------------|-----------------|-----------------------|-----------------|-------| | Wetland SW 49 Y | 0.292 | Wetland 001 | N | 0.151 | Wetland SW 49 and Wetland 001 comprise approximately 0.443 acre within the Review Area. Wetland SW 49 extends well beyond the Review Area and it is estimated that an additional 1.5 acres are present within the Relevant Reach. These additional areas are included in the cumulative analysis, and were assessed utilizing aerial photographs. Summarize overall biological, chemical and physical functions being performed: The wetlands receive surface runoff from the adjacent PA Turnpike roadway and retain sediments and toxicants before surface & subsurface flow enters the unnamed tributary. The wetlands provide general habitat for resting, nesting and rearing for common wildlife species. The wetlands provide groundwater discharge to provide for base flow in the unnamed tributary to Doubling Gap Creek. The wetlands provide flood flow storage from runoff of the adjacent PA Turnpike roadway. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | Waterway: Unnamed tributary to Doubling Gap Creek and adjacent wetlands provide the following functions that may affect TNW | |---| | ☐ Habitat for Wildlife – Describe the food, water, shelter and space. Approximately 3 +/- acres of wetlands provide habitat for common edge habitat species, including mammals and birds. | | ☐ Aquatic Life (Organisms) – examples of aquatic life or signs of aquatic life. None observed. | | incl
exp | uding
ected | ort Nutrient Cycling – watering, decomposition, fertilizers, flooding. The lower part of SW 49 is adjacent to active agricultural fields to both pasture and crop rotation. Wetlands within this reach receive sediment loads from pasture and cropland runoff, and it is that the runoff also contains and transports fertilizers, pesticides, herbicides, and untreated livestock waste. The wetlands are to trap sediments and the agricultural fertilizers and animal wastes and thus providing nutrient uptake and transformation. | |-------------|------------------|---| | | Sedim
ess iss | nent Transport – Describe if system is in balance or is there excess erosion or depositional features. Unable to determine due to sues. | | | | ant Trapping/Filtration. In addition to the treatment of agricultural chemicals as described above, the wetlands also treat storm noff from the adjacent PA Turnpike including non-point source pollutants such as oil, grease, tar, lubricants, etc. | | | | mprovement – Overall existing setting (nitrogen & phosphorus). The wetlands are expected to perform water quality treatment as described above, including the uptake and transformation of nitrogen and phosphorus from agricultural runoff. | | | | erature/PH – water chemistry, buffers and land use. The wetland are expected to contribute to stream channel base flows though ater discharge, thus maintaining lower water temperatures during months of normal surface flow. | | | | Storage – Does subject waters and/or wetland serve to store any storm water and/or floodwaters? The wetlands are expected to flood storage functions to treat storm water runoff from the PA Turnpike and adjacent agricultural fields. | | | Comn | nerce – known or documented use from out of state. No known documented use. | | | | ation – movement of crafts or vessels on water. Not applicable within the Review Area, although the stream base flows contribute ows in the downstream TNW. | | | | ation – use of waters or methods by general public use boating, swimming, fishing, etc. No known use by the public, although the be used for hunting by private property owner. | | | | ndwater discharge/recharge. The wetlands are expected to provide groundwater discharge to support base flows and are situated at waters of the stream channel. | | | 3. | Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | | D. | | TERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT
WATERS/WETLANDS ARE (CHECK ALL AT APPLY): | | | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | | | 2. | RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | ⁸See Footnote # 3. | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: This was determined using best professional judegement from review of aerial photographs due to access issues beyond the Review Area. | |-----|---| | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.443 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | SUC | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | Ide | ntify water body and summarize rationale supporting determination: | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | NO | N-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). | E. F. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | |---|------------------| | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best p judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | where such | | SECTION IV: DATA SOURCES. | | | A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, who and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Res Impact Map, sheet 10 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24,000 USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, National wetlands inventory map(s). Cite name: Newville, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): PASDA web site (2003-2004). | source
scale. | | PAMAP 2003-2006. Color Infrared 2004. DOQQs 1994. USGS NHAP83-CIR-507-225, 226, 227-3/26/84. USGS NAPP-CIR-108-24, 25-10/2/87. or ☑ Other (Name & Date): Ground level site photos taken by Maguire Engineers (Dec. 2004) and Rettew ☑ Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 199.30 TO MILEPOST
213.83/JD)02-00122-2, issued on March 1, 2002. CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued of 19, 2005. ☐ Applicable/supporting case law: ☐ Applicable/supporting scientific literature: ☐ Other information (please specify): Corps field notes. | | ## B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. ## **SECTION I: BACKGROUND INFORMATION** | A. | REPORT COMPLETION DATE FOR | APPROVED JURISDICTIONAL | DETERMINATION (JD |): February | 5, 2008 | |----|----------------------------|-------------------------|-------------------|-------------|---------| |----|----------------------------|-------------------------|-------------------|-------------|---------| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | NAB-2007-01071-P02 | |-----|--| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1977° N, Long. 77.4032° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed tributary to Conodoguinet Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: Field Determination. Date(s): December 4, 2001, September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: (NS 43, SS 63) 200-linear feet: 10-width (ft) and/or acres. Wetlands: (NW 34) 0.446 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): and established by OHWM. | | | Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: . | Boxes checked below shall be supported by completing the appropriate sections in Section III below. For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: ### Watershed size: Pick List Drainage area: Pick List Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are Pick List aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-----|--| | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation.
Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: . | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Tributary has (check all that apply): the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community | | | ☐ Discontinuous OHWM. ⁷ Explain: . | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: oil or scum line along shore objects fine shell or debris deposits (foreshore) physical markings/characteristics physical markings/characteristics tidal gauges other (list): Mean High Water Mark indicated by: survey to available datum; physical markings; vegetation lines/changes in vegetation types. | | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: tify specific pollutants, if known: | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|------|--| | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Sical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: . Wetland quality. Explain: . Project wetlands cross or serve as state boundaries. Explain: . | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: uracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: utify specific pollutants, if known: | | | (iii) | Biol | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: . Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: . | | 3. | Cha | All | wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: . - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: ## D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | |----|--| | | TNWs: linear feet width (ft), Or, acres. | | | Wetlands adjacent to TNWs: acres. | | 2. | RPWs that flow directly or indirectly into TNWs. | | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The unnamed tributary to Conodoguinet Creek (NS 43 and SS 63) has a drainage area to the Review Area of 327 acres. The Corps field inspection of September 25, 2007, confirmed the presence of surface flow in the channel (Cumberland County in declared drought watch at this time), and also the presence of finfish in the stream channel directly below the PA Turnpike cuvert crossing. Review of aerial photographs over several years coverage depict a clear stream channel siganture. | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----
---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 200- linear feet, 10-width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland NW 34 within the Review Area can be characterized as a ditched/channelized system running parallel to the north side of the PA Turnpike. The wetland system extends north of the PA Turnpike well beyond the Review Area. The wetland is continuous from the north side of the Review Area eastward to the OHWM of the unnamed tributary to Conodoguinet Creek as depicted on the delineation plan, and was verified by the Corps during the September 27, 2007, field inspection. The Review Area does not contain the delineated wetland identified as SW 50, as this is beyond the 100-foot PA Turnpike right-of-way, and also outside of the proposed limits-of-disturbance for the proposed PA Turnpike reconstruction project. ■ Wetlands directly abutting an RPW that flow directly into TNWs. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Provide acreage estimates for jurisdictional wetlands in the review area: 0.446 acres. | | | Trovide dereage estimates for jurisdictional wednings in the review area. 0.440 deres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. ⁹ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | $^{^8} See$ Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. | E. | ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |-----------|--| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SE | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 11 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Newville, PA., 1988. | $^{^{10}}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA $\it Memorandum~Regarding~CWA~Act~Jurisdiction~Following~Rapanos.$ | State/Local wetland inventory map(s): . | |--| | FEMA/FIRM maps: . | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of
1929) | | Photographs: Aerial (Name & Date): PASDA web site (2003). | | USGS NHAP83-CIR-507-225, 226, 227-3/26/84 | | USGS NAPP-CIR-108-24, 25-10/2/87. | | or 🔀 Other (Name & Date): Ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). | | Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE | | COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. | | CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August | | 19, 2005. | | Applicable/supporting case law: . | | Applicable/supporting scientific literature: | | Other information (please specify): Corps field notes. | | | #### B. ADDITIONAL COMMENTS TO SUPPORT JD: . #### APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SECTION I: B. | BACKGROUND | INFORMATION | |---------------|------------|-------------| |---------------|------------|-------------| #### REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) NAB-2007-01071-P02 | |-----------|---| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1986° N, Long. 77.3971° W. Universal Transverse Mercator: Upstream point of relevant reach: 40.1986N/77.3971W, and downstream point of Revelant Reach 40.1969N/77.3955W Name of nearest waterbody: Unnamed Tributary to Conodoguinet Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, and September 25, 2007 | | SEC
A. | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | revi | waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: CWA SECTION 404 DETERMINATION OF JURISDICTION. | | | are Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres. | | | c. Limits (boundaries) of jurisdiction based on: Not Applicable. Elevation of established OHWM (if known): | | | Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: The Review Area contains a 0.044 acre PEM wetland dominated by reed canary grass, and 220-linear feet of | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. drainage ditch excavated in uplands. The entire Relevant Reach would include an additional 1,100-linear feet of excavated ditch with no additional wetlands. A significant nexus evaluation of the Relevant Reach determined that the functions provided by the 0.044 acre wetland and approximately 1,320-linear feet of drainage ditch are insubstantial and speculative to downstream traditional navigable waters, and thus are non-jurisdictional. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | TNW | |-----| | | Identify TNW: Summarize rationale supporting determination: #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody ⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW #### (i) General Area Conditions: Watershed size: 18.8 acres Drainage area: 18.8 acres Average annual rainfall: 39.78 inches Average annual snowfall: 33.6 inches #### (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 3 tributaries before entering TNW. Project waters are 30 (or more) river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. | | Project waters cross or serve as state boundaries. Explain: | |-----
--| | | Identify flow route to TNW ⁵ : Unnamed tributary to the Conodoguinet Creek, to another unnamed tributary to the Conodoguinet Creek, to the Conodoguinet Creek, to the Susquehanna River. Tributary stream order, if known: first order. | | (b) | General Tributary Characteristics (check all that apply): Tributary is: | | | Tributary properties with respect to top of bank (estimate): Average width: 5-feet Average depth: 2-3 feet Average side slopes: 3:1. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: The 1,320-linear feet of drainage ditch is 90% vegetated and includes primarily upland grasses. Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: vegetated banks with slight erosion. Presence of run/riffle/pool complexes. Explain: No. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 0.02 to 0.03 % | | (c) | Flow: Tributary provides for: Intermittent but not seasonal flow Estimate average number of flow events in review area/year: 6-10 Describe flow regime: intermittent flow during high ground water periods and some runoff from the PA Turnpike. Other information on duration and volume: | | | Surface flow is: Confined. Characteristics: Surface flow is confined to the drainage ditch. | | | Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Tributary has (check all that apply): the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community | | | ☐ Discontinuous OHWM. Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. #### (iii) Chemical Characteristics: 2. Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: The tributary is part of a drainage ditch system utilized for agricultural purposes. Approximately 60% of the ditch system was excavated in uplands, the remaining 40% excavated in a mapped hydric soil unit (Pu, Purdy silt loam). The total drainage area for the Relevant Reach is approximately 18.8 acres. Upgradient of the ditch system on the north side of the Pennsylvania Turnpike no natural channel is present, with only a non-wetland vegetated swale located in a drainage depression. The land use within the Relevant Reach is agriculture and the PA Turnpike. Identify specific pollutants, if known: | | iuci | thry specific politicalits, it known. | |-------|------|--| | (iv) | | logical Characteristics. Channel supports (check all that apply): None applicable. Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | (i) | | Sical Characteristics: General Wetland Characteristics: Properties: Wetland size: 0.044 acres Wetland type. Explain: PEM, 100% reed canary grass. Wetland quality. Explain: Low. Project wetlands cross or serve as state boundaries. Explain: No. | | | (b) | General Flow Relationship with Non-TNW: Flow is: Intermittent flow. Explain: The wetland likely discharges a minor amount of groundwater during the late Winter/early spring when groundwater tables are at their highest. Such discharge is likely negligible due to the absence of observable channel substrates. | | | | Surface flow is: Not present Characteristics: | | | | Subsurface flow: Unknown. Explain findings: | | | | Dye (or other) test performed: | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: Minor groundwater discharge hydrologic connection. ☐ Ecological connection. Explain: No. ☐ Separated by berm/barrier. Explain: wetland is separated by the Turnpike Roadway and 36-inch RCP culvert. | | | (d) | Proximity (Relationship) to TNW Project wetlands are 30 (or more) river miles from TNW. Project waters are 20-25 aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. Estimate approximate location of wetland as within the 2-year or less floodplain. | | (ii) | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Wetland system is 100% PEM dominated by a monoculture of reed canary grass. Wetland is located within a 18.8 acre drainage area, with agriculture as the predominant land use. httify specific pollutants, if known: | | (iii) | Biol | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: PEM 100% reed canary grass. Habitat for: Federally Listed species. Explain findings: | | | | ☐ Fish/spawn areas. Expla☐ Other environmentally—☐ Aquatic/wildlife diversi | sensitive species. Exp | lain findings: | | |-----|------------------------------------|---|--|--|---| | | 3. | Characteristics of all wetlands adja
All wetland(s) being considered
Approximately (<1) acres in to | in the cumulative anal | ysis: 1 | | | | | For each wetland, specify the fo | llowing: | | | | | | Directly abuts? (Y/N)
Wetland 9 N | <u>Size (in acres)</u>
0.044 | Directly abuts? (Y/N) | Size (in acres) | | | | Summarize overall biologic upgradient agricultural fields and stor to provide is negligible individually, | mwater runoff from th | | ne small 0.044 acre wetland is able | | C. | SIC | GNIFICANT NEXUS DETERMINA | ΓΙΟΝ | | | | | by a of a wet Corof v wet trib out | ignificant nexus analysis will assess to any wetlands adjacent to the tributant TNW. For each of the following sit alands, has more than a speculative of insiderations when evaluating significater in the tributary and its proximal alands. It is not appropriate to determine the tributary and its adjacent wetland or be side of a floodplain is not solely determined to the connections between the features. | ry to determine if they uations, a significant r insubstantial effect ant nexus include, bu ity to a TNW, and the nine significant nexus tween a tributary and rminative of significant documented and the | y significantly affect the chemical, p
nexus exists if the tributary, in com
on the chemical, physical and/or bi
t are not limited to the volume, dur
e functions performed by the tribut
s based solely on any specific thresh
d the TNW). Similarly, the fact an
int nexus. | physical, and biological
integrity abination with all of its adjacent ological integrity of a TNW. ration, and frequency of the flow arry and all its adjacent hold of distance (e.g. between a adjacent wetland lies within or | | | • | Does the tributary, in combination wi | th its adjacent wetland | s (if any), have the capacity to carry | pollutants or flood waters to | | | • | TNWs, or to reduce the amount of po
Does the tributary, in combination wi
other species, such as feeding, nesting | th its adjacent wetland | s (if any), provide habitat and lifecyc | | | | • | Does the tributary, in combination wis support downstream foodwebs? | | , , , | | | | • | Does the tributary, in combination wibiological integrity of the TNW? | th its adjacent wetland | s (if any), have other relationships to | the physical, chemical, or | | | Not
belo | te: the above list of considerations is ow: | not inclusive and othe | er functions observed or known to | occur should be documented | | | 1. | Significant nexus findings for non-
findings of presence or absence of sig | | | | | | 2. | Significant nexus findings for non-ITNWs. Explain findings of presence adjacent wetlands, then go to Section | or absence of signific | | | | | | | Signific | ant Nexus Checklist | | | wet | land | at for Wildlife – Describe the food, wa
are not anticipated to provide wildlife
o routine grass cutting from maintenan | nabitat. The 0.044 acre | e wetland is located within the right- | of-way of the PA Turnpike and is | | | Aqua | tic Life (Organisms) – examples of aqu | natic life or signs of aq | uatic life. None. | | | | Supp | port Nutrient Cycling – watering, decor | nposition, fertilizers, f | looding. The opportunity to perform | this function is negligible. | | □ Sediment Transport – Describe if system is in balance or is there excess erosion or depositional features. The drainage ditch is stable with 90% plus vegetative stabilization. A vegetated swale exists upgradient of the PA Turnpike crossing, which appears to be an agricultural BMP. It is not anticipated that the drainage ditch and 0.044 acre wetland either contribute or transport substantial amounts of sediment. | |--| | □ Pollutant Trapping/Filtration. This function would be provided by the 0.044 acre wetland in a very limited and unsubstantial degree. | | \square WQ Improvement – Overall existing setting (nitrogen & phosphorus). This function would be provided by the 0.044 acre wetland in a very limited and unsubstantial degree. | | \Box Temperature/PH – water chemistry, buffers and land use. The anticipated minor amount of groundwater discharge provided by the 0.044 acre wetland, coupled with the time of year that such discharge would occur (late winter/early spring) would provide minimal to no water temperature augmentation. | | ☐ Critical Transitional Area – Riparian Zone which life aquatic ecosystem with areas. None. that are flooded periodically | | ☐ Flood Storage – Does subject waters and/or wetland serve to store any stormwater and/or floodwaters? Negligible to none. | | ☐ Commerce – known or documented use from out of state. No commerce factors known or anticipated. | | □ Navigation – movement of crafts or vessels on water. None. | | □ Recreation – use of waters or methods by general public use boating, swimming, fishing, etc. None known or anticipated. | | □ Public Health – overall health of a community. Negligible to none. | | □ Groundwater discharge/recharge. Minimal groundwater discharge from 0.044 acre wetland #09. It is my best professional opinion that the groundwater discharge in the area of wetland #09 is only sufficient to marginally maintain the area as a wetland. | | □ Other. None. | | 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The functions and services provided by the cumulative total of 1 wetland (Wetland #09, 0.044 acre) and 1,320-linear feet of excavated drainage ditch (SS 64) within the identified Relevant Reach are negligible and insubstantial, and did not meet the Significant Nexus standard to be considered a jurisdictional waters of the United States. | | D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | | 2. RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. | ⁸See Footnote # 3. | | Identify type(s) of waters: | |----------|---| | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE
SU | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | Ide | ntify water body and summarize rationale supporting determination: | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | | If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate
Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Reference Section 3.C.3. Other: (explain, if not covered above): | E. F. $^{^{9}\,\}mathrm{To}$ complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best profession judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | nal | |---|------| | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where so a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): 220-linear feet, 5-width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: 0.044 acres. | uch | | The functions provided by the cumulative total of 1 wetland (Wetland #09, 0.044 acre) and 1,320-linear feet of excavated drainage di (SS #64) within the entire Relevant Reach are negligible and insubstantial, and did not meet the Significant Nexus standard to be considered a jurisdictional waters of the United States. | itch | | SECTION IV: DATA SOURCES. A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where check and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 12 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 198 National wetlands inventory map(s). Cite name: Newville, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): PASDA web site, PAMAP Program (2003-2006). | | | USGS NHAP83-CIR-507-225,226,227-3/26/84 | st | ### B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. #### **SECTION I: BACKGROUND INFORMATION** #### A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) NAB-2007-01071-P02 | | NAB-2007-01071-P02 | |------|--| | С. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1991° N, Long. 77.3947° W. Upstream point of Relevant Reach: 40.2011N, 77.3939W, and downstream point of Relevant Reach: 40.1900N, 77.3917W Universal Transverse Mercator: Name of nearest waterbody: Unnamed Tributary to the Conodoguinet Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a | | D. | different JD form. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): | | | ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, and September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | revi | we area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce Explain: CWA SECTION 404 DETERMINATION OF JURISDICTION. | | | are Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 400-linear feet: 10-width (ft) and/or acres. Wetlands: 0.084 acres. c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual | | | Elevation of established OHWM (if known):and, established by OHWM. 2. Non-regulated waters/wetlands (check if applicable): Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its
adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: #### ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | (b) | General Tributary C | Characteristics (check all that apply | <u>'):</u> | | |-------|-----|---|---|------------|---| | | | Tributary is: | ☐ Natural ☐ Artificial (man-made). Explain ☐ Manipulated (man-altered). E | | n: . | | | | Average width
Average depth
Average side s | t: slopes: Pick List. ubstrate composition (check all that Sands Gravel Vegetation. Type/% | t app | ly):
Concrete Muck | | | | Presence of run/riff
Tributary geometry | /stability [e.g., highly eroding, slow
le/pool complexes. Explain:
: Pick List
(approximate average slope): % | ıghin | g banks]. Explain: | | | (c) | Describe flow | umber of flow events in review are | a/yea | r: Pick List | | | | Surface flow is: Pic | ck List. Characteristics: . | | | | | | | ick List. Explain findings: . ner) test performed: . | | | | | | clear, 1 change shelvin vegeta leaf lit sedime water s | anks check all indicators that apply): natural line impressed on the bank es in the character of soil ng tion matted down, bent, or absent ter disturbed or washed away ent deposition staining | | the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting scour multiple observed or predicted flow events abrupt change in plant community | | | | ☐ High Tide☐ oil or s☐ fine sh | e Line indicated by: scum line along shore objects well or debris deposits (foreshore) al markings/characteristics auges | Mea | eral extent of CWA jurisdiction (check all that apply): n High Water Mark indicated by: survey to available datum; ohysical markings; vegetation lines/changes in vegetation types. | | (iii) | Cha | emical Characterist
tracterize tributary (e
Explain:
ntify specific pollutar | .g., water color is clear, discolored | , oily | film; water quality; general watershed characteristics, etc.) | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width):. Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|--| | 2. | Cha | racteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | | Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: Surface flow is: Pick List Characteristics: Subsurface flow: Pick List. Explain findings: □ Dye (or other) test performed: | | | | (c) Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Biological connection. Explain: Separated by berm/barrier. Explain: | | | | (d) Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | () | Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Identify specific pollutants, if known: | | | (iii) | Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width):. Vegetation type/percent cover. Explain: . Habitat for: Federally Listed species. Explain findings: . Fish/spawn areas. Explain findings: . Other environmentally-sensitive species. Explain findings: . Aquatic/wildlife diversity. Explain findings: . | | 3. | Cha | racteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. | For each wetland, specify the following: Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does
the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: ### D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and Adj | acent Wetlands. | Check all that apply | y and provide size estimates in review area: | |----|--------------|-----------------|----------------------|--| | | TNWs: | linear feet | width (ft), Or, | acres. | | | Wetlands adj | acent to TNWs: | acres. | | #### 2. RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The identified Relevant Reach includes the unnamed tributary from its headwater downstream to its confluence with the Conodoguinet Creek, a total length of approximately 4,664-linear feet. During the time of the field visit, the channel substrates in the Review Area were saturated although no visible surface flow was evident. During this time Cumberland County was in a declared drought watch with below average precipitation. It is anticipated that normal surface flow was flowing only subsurface due to the below average precipitation, and that in normal years the channel would be perennial within the Review Area. Near the downstream point of the Relevant Reach NWI mapping and aerial photographs indicate the presence of approximately 5 acres of mixed PEM and PFO wetland. Due to the size of these wetlands, groundwater discharge to the unnamed tributary is expected in sufficient duration for the channel to be perennial in the lower portion of the overall Relevant Reach, and thus making the entire Relevant Reach perennial. Aerial photographs depict a well developed vegetated riparian corridor, including wetland fringe areas, along the majority of the unnamed tributary which is indicative of perennial flow in this region, particularly in agricultural areas. | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally. | |----|----|---| | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 400 - linear feet, 10 -width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. | | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: The 0.064 acre SW 51 is depicted on the delineation plan as being directly abutting the unnamed tributary to the Conodoguinet Creek directly downstream of the PA Turnpike culvert crossing. The Corps field visit of September 25, 2007, verified that wetland SW 51 is directly abutting the stream channel. Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly | | | | abutting an RPW: Provide acreage estimates for jurisdictional wetlands in the review area: 0.084 acres. | | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | Е. | DE | LATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 | ⁸See Footnote # 3. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |-----|--| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands
were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: | | SEC | Wetlands: acres. CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 12A of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24,000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Newville, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date):PASDA web site (2003-2004). USGS NhAPB-CIR-108-24,25-10/2/87 or Other (Name & Date): Ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). | | | Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. | | CE | NAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August | | | | | |-------------|---|--|--|--|--| | 19, | 2005. | | | | | | | Applicable/supporting case law: . | | | | | | | Applicable/supporting scientific literature: . | | | | | | \boxtimes | Other information (please specify): Corps field notes. | | | | | | | | | | | | | B. ADI | B. ADDITIONAL COMMENTS TO SUPPORT JD: | | | | | #### APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. # <u>SECTION I: BACKGROUND INFORMATION</u> A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 5, 2008 | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | NAB-2007-01071-P02 | |-----|--| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.1997° N, Long. 77.3914° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Tributary to the Conodoguinet Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: ☐ Field Determination. Date(s): December 4, 2001, and September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | are Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 400-linear feet: 10-width (ft) and/or acres. Wetlands: 0.334 acres (Wetland SW 52). | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): and established by OHWM. | | | 2. Non-regulated waters/wetlands (check if applicable): Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of
law. If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: | | Watershed size: Pick List | |------|---| | | Drainage area: Pick List | | | Average annual rainfall: | | | Average annual snowfall: | | (88) | | | (ii) | Physical Characteristics: | | | (a) Relationship with TNW: | | | ☐ Tributary flows directly into TNW. | | | Tributary flows through Pick List tributaries before entering TNW. | | | Project waters are Pick List river miles from TNW. | | | Project waters are Pick List river miles from RPW. | | | Project waters are Pick List aerial (straight) miles from TNW. | | | Project waters are Pick List aerial (straight) miles from RPW. | | | Project waters cross or serve as state boundaries. Explain: . | | | T1 .'C CI | | | Identify flow route to TNW ⁵ : | | | Tributary stream order, if known: | ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | (b) | General Tributary Characteristics (check all that apply): | | |-------|-----|--|-----------| | | | Tributary is: Natural | | | | | Artificial (man-made). Explain: | | | | | Manipulated (man-altered). Explain: | | | | | Tributary properties with respect to top of bank (estimate): Average width: Average depth: Average side slopes: Pick List. | | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: vegetated banks with slight eros Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | ion. | | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | | | Surface flow is: Pick List. Characteristics: . | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. Explain: | | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apple High Tide Line indicated by: Oil or scum line along shore objects a | y): | | (iii) | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristic Explain: Explain: itify specific pollutants, if known: | cs, etc.) | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width):. Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|---| | 2. | Cha | racteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: Wetland type. Explain:. Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: Surface flow is: Pick List Characteristics: Subsurface flow: Pick List. Explain findings: . Dye (or other) test performed: | | | | (c) Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain: | | | | (d) Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Identify specific pollutants, if known: | | | (iii) | Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. | For each wetland, specify the following: Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of
water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: ## D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and | Adjacent Wetlands. | Check all that appl | y and provide size estimates in review area: | |----|----------|---------------------|---------------------|--| | | TNWs: | linear feet | width (ft), Or, | acres. | | | Wetland | s adjacent to TNWs: | acres. | | #### 2. RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The unnamed tributary to the Conodoguinet Creek exhibited surface flow during the Corps September 25, 2007, site visit, and during this time there was a declared drought watch in Cumberland County, PA. South, and down gradient of the PA Turnpike culvert crossing, the stream channel is bordered by an extensive PEM wetland system as a wide riparian buffer. The wetland area is estimated to exceed 5 acres in size. It is anticipated that this wetland contributes sufficient groundwater discharge to augment perennial hydrology within the stream channel. The stream channel and riparian wetland flow through an active agricultural operation and appears not to be subject to routine plowing. The stream channel and riparian wetland are revealed as a clear and distinct signature on several years of aerial photographs examined. The drainage area to the Review Area at the PA Turnpike culvert crossing is 327 acres, and personal observation for similar streams in the region have confirmed perennial flow in surface watersheds of less than 100 acres. | | ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally. | |------|--| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 400- linear feet, 10-width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland SW 52 as depicted on the delineation mapping is directly abutting the stream channel on both sides as a riparian buffer (stream channel runs through approximate center of SW 52). Corps field investigation of September 25, 2007, verified that SW 52, within the Review Area, is directly abutting the stream channel | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.334 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.081 acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE O | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. | E. ⁸See Footnote # 3. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----|---| | | Identify water body and summarize rationale supporting determination: | |
 Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SE | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 14 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Newville, PA., 1952, photorevised 1969 and 1975. 1:24,000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986 National wetlands inventory map(s): | | | FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date):PASDA web site (2003-2004). USGS NHAP83-CIR-507-225, 226, 227-3/26/84 USGA NAPP-CIR-108-24, 25-10/2/87 or Other (Name & Date): Ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE | | | COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August 19, 2005. | | | Applicable/supporting case law: . | |-------------|---| | | Applicable/supporting scientific literature: . | | \boxtimes | Other information (please specify): Corps field notes | #### B. ADDITIONAL COMMENTS TO SUPPORT JD: #### APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. #### **SECTION I: BACKGROUND INFORMATION** | Α. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION | (JD |): February 5 | 5, 2008 | |----|--|-----|---------------|---------| |----|--|-----|---------------|---------| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | |----|---| | | NAB-2007-01071-P02 | | | | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: | | | NAD-2007-01071-1 02 | |-----|---| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.2030° N, Long. 77.3702° W. Universal Transverse Mercator: Name of nearest waterbody: Rock Run Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: Field Determination. Date(s): December 4, 2001, September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: (Rock Run identified as Channel 001) 700-linear feet: 20-width (ft) and/or Wetlands: (Wetlands 007 and 008) 0.20 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): and established by OHWM. | | | Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. | Explain: ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is
adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: #### Watershed size: Pick List Drainage area: Pick List Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are Pick List aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): | |-------|---| | | Tributary is: Natural | | | Artificial (man-made). Explain: | | | Manipulated (man-altered). Explain: | | | Tributary properties with respect to top of bank (estimate): Average width: Average depth: Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: . | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): | | | ☐ Discontinuous OHWM. ⁷ Explain: . | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | Chai | mical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: tify specific pollutants, if known: | | 14011 | ary specific politicality, it known. | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | (i· | w) Bio | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: | |------|---------|--| | | | ☐ Fish/spawn areas. Explain findings: ☐ Other environmentally-sensitive species. Explain findings: ☐ Aquatic/wildlife diversity. Explain findings: | | 2. C | haract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | (i) | | Secial Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | Surface flow is: Pick List Characteristics: | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | (ii | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: ntify specific pollutants, if known: | | (i | ii) Bio | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: . Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. C | All | veristics of all wetlands adjacent to the tributary (if any) wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis | Directly abuts? (Y/N) Siz Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION substrates. A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations
is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: ## D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | licating that
rea to the
17, field
re of benthic | |---| | ea
17, | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----|--| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 700- linear feet, 20-width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetlands 007 and 008 are depicted on the delineation plan as directly abutting Rock Run. The Corps September 25, 2007, field inspection verified that wetlands 007 and 008 both directly abut Rock Run on the north side of the PA Turnpike bridge crossing. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.20 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 | E. To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----|---| | | Identify water body and summarize rationale supporting determination: | | | | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). | | | Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | SE | CTION IV: DATA SOURCES. | | | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource Impact Map, sheet 18 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. | | | U.S. Geological Survey map(s). Cite scale & quad name: Plainfield, PA., 1953, photorevised 1969 and 1975. 1:24000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Plainfield, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: ☑ Aerial (Name & Date): PASDA web site (2003). USGS NHAP83-CIR-507-183, 184-3/26/84 | #### B. ADDITIONAL COMMENTS TO SUPPORT JD: #### APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions
provided in Section IV of the JD Form Instructional Guidebook. B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Baltimore, (PA Turnpike/Milepost 211 to 215 Mainline) | SECTION I: | BACKGROUND INFORMATION | |------------|------------------------| |------------|------------------------| | Α. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION | (JD |): February 5 | 5, 2008 | |----|--|-----|---------------|---------| |----|--|-----|---------------|---------| | | NAB-2007-01071-P02 | |------|---| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Pennsylvania County/parish/borough: Cumberland County City: NA Center coordinates of site (lat/long in degree decimal format): Lat. 40.2033° N, Long. 77.3622° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed tributay to Conodoguinet Creek | | | Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Susquehanna River Name of watershed or Hydrologic Unit Code (HUC): 02050305, Lower Susquehanna-Swatara Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: Field Determination. Date(s): December 4, 2001, September 25, 2007 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. (| CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. | a. Indicate presence of waters of U.S. in review area (check all that apply): 1 Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 900-linear feet: 10-width (ft) and/or Wetlands: (BTB 005) 0.20 acres. c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): and established by OHWM. | 2. | Non-regulated | waters/wetlands | (check if | applicable): | 3 | |----|---------------|-----------------|-----------|--------------|---| | | | | | | | TNWs, including territorial seas | Potentially ju | urisdictional | waters and/or | wetlands | were assessed | l within the review | area and determine | ed to be not jurisdict | ional. | |----------------|---------------|---------------|----------|---------------|---------------------|--------------------|------------------------|--------| | Explain: | | | | | | | | | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: #### Watershed size: Pick List Drainage area: Pick List Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. Primary tributary substrate composition (check all that apply): Slits | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: |
--|------|--| | Silts | | Average width: feet Average depth: feet | | Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % (c) Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: Surface flow is: Pick List. Characteristics: Subsurface flow: Pick List. Explain findings: | | ☐ Silts ☐ Concrete ☐ Cobbles ☐ Gravel ☐ Muck ☐ Bedrock ☐ Vegetation. Type/% cover: | | Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: Surface flow is: Pick List. Characteristics: Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent sediment sorting sediment sorting seour so | | Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank destruction of terrestrial vegetation shelving destruction matted down, bent, or absent sediment sorting sediment sorting sediment deposition multiple observed or predicted flow events water staining disturbed or washed away ster staining disturbed or washed away should be abrupt change in plant community disturbed or washed away should be abrupt change in plant community disturbed or washed away should be abrupt change in plant community disturbed or washed away should be abrupt change in plant community disturbed or washed away should be abrupt change in plant community disturbed or washed away should be abrupt change in plant community disturbed or washed away should be abrupt change in plant community disturbed by: This flactors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: Survey to available datum; physical markings; physical markings; physical markings; physical markings; other (list): Chemical Characteristics: Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, et Explain: | (c) | Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: . | | Dye (or other) test performed: Tributary has (check all that apply): | | Surface flow is: Pick List. Characteristics: . | | Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wack line sediment sorting sediment sorting sediment sorting sediment deposition multiple observed or predicted flow events abrupt change in plant community other (list): Discontinuous OHWM. ⁷ Explain: If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: oil or scum line along shore objects survey to available datum; fine shell or debris deposits (foreshore) physical markings/characteristics wegetation lines/changes in vegetation types. tidal gauges other (list): Chemical Characteristics: Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, et Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | □ Bed and banks □ OHWM ⁶ (check all indicators that apply): □ clear, natural line impressed on the bank □ changes in the character of soil □ destruction of terrestrial vegetation shelving □ the presence of wrack line □ the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line □ vegetation matted down, bent, or absent □ leaf litter disturbed or washed away □ scour □ sediment sorting sediment deposition □ multiple observed or predicted flow events abrupt change in plant community other (list): | | Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, et Explain: . | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | | Chai | racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: | (iii) ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|---| | 2. | Cha | racteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | | Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: . Wetland quality. Explain: . Project wetlands cross or serve as state boundaries. Explain: . | | | | (b) General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: Surface flow is: Pick List Characteristics: Subsurface flow: Pick List. Explain findings: | | | | Dye (or other) test performed: | | | | (d) Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | , | Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Identify specific pollutants, if known: | | | (iii) | Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain
findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | | racteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: . - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: . - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: ## D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | | TNWs: linear feet width (ft), C | r, acres. | |----|---|--| | | Wetlands adjacent to TNWs: acres. | | | 2. | RPWs that flow directly or indirectly into | NWs. | | | ☐ Tributaries of TNWs where tributaries typ | ically flow year-round are jurisdictional. Provide data and rationale indicating the | | | tributary is perennial: The unnamed tribu | tary to Conodoguinet Creek originates from a large PEM wetland of 1 + acre ou | | | of the Review Area. The unnamed tribut | ary conveyed surface flow during the time of the Corps September 25, 2007, fie | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The unnamed tributary to Conodoguinet Creek originates from a large PEM wetland of 1 + acre outside of the Review Area. The unnamed tributary conveyed surface flow during the time of the Corps September 25, 2007, field inspection. At this time Cumberland County was included in a list of PA under a declared drought watch. In the lower portions of the unnamed tributary, the stream has been channelinzed and runs directly parallel to the PA Turnpike. This area includes slower pools that contained the submerged obligate wetland plant Elodea sp. | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |-----|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 900- linear feet, 10-width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland BTB-005 was depicted on the delineation plan as directly abutting the unnamed stream channel. This condition was verified by the Corps during the September 25, 2007, field inspection. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: 0.20 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | 107 | N ATED INTEDSTATE OD INTDA STATELWATEDS INCLIDING ISOLATED WETLANDS THE USE | - SUCH WATERS (CHECK ALL THAT APPLY):10 DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY ⁸See Footnote # 3. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |-----------|-------------
---| | | Idei | ntify water body and summarize rationale supporting determination: | | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . Wetlands: acres. | | F. | | N-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | facto | vide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR ors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional ment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | | vide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such ading is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SE | CTIO | N IV: DATA SOURCES. | | A. | and
Imp | PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: PA Turnpike Commission, Aquatic Resource act Map, sheet 20 of 22, dated August 28, 2007. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: Plainfield, PA., 1952, photorevised 1969 and 1975. 1:24000 scale. USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Cumberland and Perry Counties, PA., 1986. National wetlands inventory map(s). Cite name: Plainfield, PA., 1988. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Fleyation is: (National Geodectic Vertical Datum of 1929) | | | \boxtimes | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): PASDA website (2003-2006). USGS NHAP83-CIR-507-183, 184-3/26/84. USGS NHAP83 CIR 577-89 4/2/86 | $USGS\ NHAP83-CIR-577-89-4/2/86.$ or \boxtimes Other (Name & Date): Ground level photos taken by Maguire Engineers (Dec. 2004) and Rettew (June 2001). | Previous determination(s). File no. and date of response letter: CENAB-OP-RPA(PENNSYLVANIA TURNPIKE | | | |---|--|--| | COMMISSION/MILEPOST 199.30 TO MILEPOST 213.83/JD)02-00122-2, issued on March 1, 2002. | | | | CENAB-OP-RPA(PENNSYLVANIA TURNPIKE COMMISSION/MILEPOST 213.82 TO 227.00/JD)04-01846-2, issued on August | | | | 19, 2005. | | | | Applicable/supporting case law: . | | | | Applicable/supporting scientific literature: | | | | Other information (please specify): Corps field notes. | | | | | | | ### B. ADDITIONAL COMMENTS TO SUPPORT JD: .